Issue 4, 2001

Abstract

The elemental sulfur formed at the arsenopyrite surface after oxidation by ferric iron was quantitatively measured by extraction in perchloroethylene and subsequent quantitative analysis by HPLC. Reactions with ferric iron in perchloric acid solutions or in sulfuric acid solutions (both at pH = 1 and 42 °C, which approximate extreme acid mine drainage conditions) produced elemental sulfur in quantities greater than 50% of the total reacted sulfur. The controversy surrounding the mechanism of the oxidative dissolution of arsenopyrite is discussed in light of these measurements. Based on the observation of greater than 50% production of elemental sulfur, a mechanism by which all the sulfur from the mineral proceeds through thiosulfate can be eliminated as a possible description of the dissolution of arsenopyrite. Instead, it is likely the other constituents of the mineral lattice, Fe and As, are leached out, leaving behind a S0 lattice. Nucleation reactions will then result in the formation of stable S8 rings.

Article information

Article type
Paper
Submitted
10 May 2001
Accepted
13 Jul 2001

Geochem. Trans., 2001,2, 25-29

Quantitative determination of elemental sulfur at the arsenopyrite surface after oxidation by ferric iron: mechanistic implications

M. M. McGuire, J. F. Banfield and R. J. Hamers, Geochem. Trans., 2001, 2, 25 DOI: 10.1039/B104111H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements