Scientists strike (nano)gold in search for bacteria detection methods
ChemSci Pick of the Week
Scientists from Nanjing University in China have developed a new way to detect bacterial activity using a gold nanoparticle ‘sticky note’ that can also carry antibiotics to kill the bacteria present.
“Bacteria exist everywhere in an average person’s daily life, and they usually develop into biofilms – a society of bacteria,” explains Dr Huangxian Ju, director of the State Key Laboratory of Analytical Chemistry for Life Science at Nanjing University.
Just like a human society, a society of bacteria needs effective communication to grow and thrive. Bacteria in biofilms communicate by releasing small signal molecules, adjusting and coordinating their behaviour in response to the signals they receive.
A nano-gold sandwich
This cell-to-cell communication is called ‘quorum sensing’ and it allows bacteria to monitor their environment and manage their activity, affecting things like the strength of an infection. Being able to detect and track this activity in real-time is key to understanding how bacteria cause disease, and crucially, how we can design better treatments to stop them.
Previous methods for studying bacterial communication require long, complex processes that are often difficult to implement. Huangxian Ju and his team have designed an easy-to-assemble nanoparticle ‘sticky note’, which they can attach to a film of bacteria, enabling them to use an analytical technique to detect the bacteria’s activity.
This ‘sticky note’ makes use of recent developments in the field of nanomaterials and its structure can be thought of as a sandwich. The ‘bread’ of the sandwich is made of a thin sheet of hexagonal boron nitride: a 2D material with similar properties to graphene. Between these layers are a filling of gold nanoparticles, which are needed for the analytical technique, known as Raman spectroscopy, to work.
Developing more effective antibiotics
Huangxian Ju’s team were keen to design a material that would not only allow them to monitor bacterial activity, but also inhibit it. Antibiotics can be loaded onto the boron nitride sheets and the Raman spectroscopy used to monitor how effective these antibiotics are at killing the bacterial biofilm. The technique could help scientists develop and test new drugs to treat bacterial infections.
“The traditional techniques for studying quorum sensing need tedious pre-treatments, long operation periods with skilled technicians,” says Huangxian Ju. “Therefore, it is highly desired for real-time tracing of the quorum sensing behaviour by a convenient and robust method in a low-cost manner.
“This ‘sticky note’ provides a versatile platform in investigating bacterial behaviours on hospital medical supplies, as well as developing antibiotic therapeutics with drug loading, and has wide applications in medicine and the pharmaceutical industry.”
This article is free to read in our open access, flagship journal Chemical Science: Huangxian Ju et al., Chem. Sci., 2018, Accepted Manuscript, DOI: 10.1039/C8SC02078G. You can access all of our ChemSci Picks in this collection.
ChemSci Pick of the Week
Chemical Science is the flagship journal of the Royal Society of Chemistry and publishes findings of exceptional significance from across the chemical sciences. It is a global journal for the discovery and reporting of breakthroughs in basic chemical research, communicated to a worldwide audience without barriers, through open access. All article publication charges have been waived, meaning that the journal is free to read and free to publish.
Every Wednesday we are sharing one story from Chemical Science, highlighting the cutting-edge work we publish. Follow @ChemicalScience and #ChemSciPicks on Twitter to stay up to date.
If you are a journalist wishing to receive brand new research from our journals under embargo, please contact the press office using the contact box below, to be added to our distribution list.
Press office
- Tel:
- +44 (0) 20 7440 3351
- Email:
- Send us an email